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Determining the subcellular localization of a protein is an important first step toward understanding its function. Here, we describe

the properties of three well-known N-terminal sequence motifs directing proteins to the secretory pathway, mitochondria and

chloroplasts, and sketch a brief history of methods to predict subcellular localization based on these sorting signals and other

sequence properties. We then outline how to use a number of internet-accessible tools to arrive at a reliable subcellular localization

prediction for eukaryotic and prokaryotic proteins. In particular, we provide detailed step-by-step instructions for the coupled use of

the amino-acid sequence-based predictors TargetP, SignalP, ChloroP and TMHMM, which are all hosted at the Center for Biological

Sequence Analysis, Technical University of Denmark. In addition, we describe and provide web references to other useful subcellular

localization predictors. Finally, we discuss predictive performance measures in general and the performance of TargetP and SignalP in

particular.

INTRODUCTION
In 1999, the Nobel prize in Physiology or Medicine was awarded to
Günther Blobel for ‘‘the discovery that proteins have intrinsic
signals that govern their transport and localization in the cell.’’ As
the subcellular localization of a protein is an important clue to its
function, the characterization and prediction of these intrinsic
signals—the ‘‘zip codes’’ of proteins—has become a major task in
bioinformatics.

Over the last few years, several methods to determine the
subcellular localization of proteins using high-throughput experi-
ments have been developed. One of the first attempts was by Burns
et al.1, who randomly inserted the lacZ reporter gene into the yeast
genome, and were able to determine the subcellular localization of a
total of 245 yeast fusion proteins. This approach was further refined
by the use of the green fluorescent protein2 or simian virus V5
epitope to tag cDNAs and localize the resulting fusion proteins
through fluorescence screening of the transfected yeast cells3,4 and
later also human cells5. Although these methods allow the study of
protein localization in vivo, the presence of the fusion/tagging
protein may interfere with sequence or structural signals necessary
to direct the protein of interest to its proper compartment.

The other main line of large-scale subcellular localization deter-
mination, enabled in part by the presence of whole-genome DNA
sequences, is to homogenize and fractionate (most commonly
through centrifugation) the cell and use mass spectrometry6 to
identify the proteins in the various fractions7,8. With proper
purification and fractionation techniques, the contents of a parti-
cular fraction will correspond to a particular organelle, but the
approach is sensitive to contaminations. Andersen et al.9,10 pre-
sented a method, protein correlation profiling, which allows the
simultaneous analysis over several fractions, thus reducing the need
for a complete purification of each fraction. In a recent study, this
technique was used to map the subcellular localization of 1,404
mouse liver proteins11. Using mass-spectrometry-based organellar
proteomics and stable isotope labeling, it has also recently become
possible to map quantitatively the dynamics of protein trafficking

in and out of entire compartments, for example, the human
nucleolus12.

A third approach was described by Agaton et al.13. They
demonstrated that protein-specific antibodies can be designed
and used, through immunohistochemistry, to map tissue specificity
and subcellular localization of human proteins. Although applied
to fixed, and not living cells, and presently focusing on different
tissues rather than different subcellular localizations14, this is a
promising approach to detect the whereabouts of unaltered pro-
teins at their naturally occurring expression levels.

As it is inevitable that high-throughput experimental techniques
produce some false-positive assignments (and also false negatives),
there is a strong degree of complementarity between the use of
experimental methods and computational tools that can score the
likelihood that a protein belongs to a given compartment. Such
scores can be used to improve the quality of high-throughput data,
and also their subsequent use as starting points for identification of
compartment-specific protein complexes and networks15.

Signal peptides
The best known protein ‘‘zip code’’ is the secretory signal peptide
(SP), which is found in all the three domains of life. It targets a
protein for translocation across the plasma membrane in prokar-
yotes and across the endoplasmic reticulum (ER) membrane in
eukaryotes16. It is an N-terminal peptide, typically 15–30 amino
acids long, which is cleaved off during translocation of the protein
across the membrane. There is no simple consensus sequence for
SPs, but they typically show three distinct compositional zones: an
N-terminal region (n-region) which often contains positively
charged residues, a hydrophobic region (h-region) of at least six
residues and a C-terminal region (c-region) of polar uncharged
residues with some conservation at the �3 and �1 positions
relative to the cleavage site (Table 1).

It should be noted that far from all proteins with secretory SPs
are actually secreted to the outside of the cell. In Gram-negative
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bacteria, they by default end up in the periplasmic compartment,
and a separate mechanism is needed to secrete them into the
growth medium17. In eukaryotes, proteins translocated across the
ER membrane are by default transported through the Golgi
apparatus and exported by secretory vesicles, but some proteins
have specific retention signals that hold them back in the ER or the
Golgi or divert them to the lysosomes. In general, these retention
signals are poorly characterized, one exception being the ER lumen
retention signal, which has the consensus sequence KDEL or
HDEL18.

Not all secretory proteins have SPs—alternative secretion path-
ways exist in both prokaryotes and eukaryotes. In eukaryotes, a few
proteins are secreted without an SP through the so-called non-
classical pathway, which does not follow the classical route through
the ER and Golgi19. Well-known examples include fibroblast
growth factors, interleukins and galectins. In Gram-negative
bacteria, as many as five secretion systems are known, of which
type II and V depend on cleaved SPs, whereas type I, III and IV do
not17,20–22. Type I secretion exists also in Gram-positive bacteria, as
well as a recently discovered signal-peptide-independent secretion
system, which is not identical to any of the five Gram-negative
types23.

Transit peptides
The targeting peptides of chloroplasts and mitochondria are also
N-terminal peptides24, and similar to the SPs for secretion, these
presequences are cleaved off upon entry into their final compart-
ment. Their sequence features are, however, less well characterized
and the reported sequence motifs are even less conserved than those
of the secretory SP.

The chloroplast transit peptide (cTP), which directs nuclear-
encoded proteins into the chloroplast stroma, tends to be rich in
hydroxylated residues, in particular serines, and is devoid of acidic
residues25. A motif, VRA|AAV, has been detected around the
cleavage site (|)26, but the signal is relatively weak. The most
conserved residue is an alanine directly after the N-terminal
methionine. Like SPs, cTPs have been characterized as having a
three-domain structure: an uncharged N-terminal domain of
approximately ten residues beginning with MA- and terminating
with a G/P, a central domain lacking acidic residues but enriched in
S/T and, finally, a C-terminal domain enriched in arginines and
potentially forming an amphiphilic b-strand. Various regions of
cTPs have also been predicted to form amphipathic a-helices27.
cTPs from different proteins vary considerably in length (20–100
residues).

The mitochondrial targeting peptide (mTP), which directs
nuclear-encoded proteins into the mitochondrial matrix, is
enriched in Arg, Ser and Ala, whereas negatively charged residues
are rare25. The sequence conservation around the cleavage site is
low, with an Arg in position �2 or�3 relative to the cleavage site as
the most common motif 28,29. For some mitochondrial proteins, an
additional 8–9 residues are removed after initial cleavage of the
mTP30,31. The mTP is structurally versatile and is known to form an
amphipathic a-helix when bound to its receptor on the mitochon-
drial surface32, whereas it adopts an extended structure during mTP
cleavage33. The length of reported mTPs spans from 6 residues
up to 85.

In both mitochondria and, in particular, chloroplasts, there is
also a significant intraorganellar sorting taking place. Owing to the

endosymbiotic origin of chloroplasts and mitochondria, the pro-
cess of translocating a protein from the stroma of the chloroplast or
the matrix of the mitochondrion, to the thylakoid lumen and the
mitochondrial intermembrane space (IMS; i.e., between the inner
and outer mitochondrial membranes), respectively, is topologically
equivalent to and evolutionary reminiscent of prokaryotic protein
secretion34,35. In particular, the corresponding signals are similar to
the SP for secretion. The signals are arranged in a so-called bipartite
presequence with the cTP or mTP at the N-terminus, followed by
the SP-like signal, which is exposed only after the cleavage of the
cTP/mTP part. For proteins destined for the thylakoid lumen, this
signal has been termed lumenal transfer peptide (lTP) and it shares
as expected significant features with the SP for secretion, for
example, the three-region composition and a strongly conserved
�3, �1-motif16,36–38.

Some proteins are dually targeted to both chloroplasts and
mitochondria using the same targeting sequence39–41. Finally,
there are examples of other, less common and less well character-
ized, pathways for organellar protein sorting42,43.

Prediction of sorting signals
Methods for computational prediction of protein subcellular loca-
lization can roughly be divided into two categories: those that
exclusively use the amino-acid sequence of the protein as the input
and those that also require other input data, for example, expres-
sion levels44, phylogenetic profiles45, lexical context in database
entries46 or Gene Ontology numbered terms (GO-numbers)47–49.
When additional information is provided, reported performance
values will in general be higher than for ‘‘ab initio’’ sequence-based
methods, whereas the applicability will be more limited, as these
methods can only be used for examples where this additional
information is available. Thus, the use of lexical context or GO-
terms requires that the proteins are already to some degree
annotated, and this annotation may often include information
on subcellular localization, either explicitly (as in the ‘‘cellular
component’’ GO-numbers) or implicitly (as in the SWISS-PROT
description lines or keywords). The methods using GO-numbers
are technically able to accept input consisting of sequence only, but
it should be noted that their high reported performances have only
been measured on data sets where almost all sequences had GO-
numbers, and a high proportion of these were of the ‘‘cellular
component’’ type48.

There are also methods that need only the sequence as input but
then use it to search databases for homologs or to look for
cooccurrence of certain protein domains50,51. In general, annota-
tion by homology to proteins with known subcellular localization
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TABLE 1 | Examples of signal peptidesa.

Human a-1-antichymotrypsin precursor (ACT):
MERMLPLLALGLLAAGFCPAVLCkHPNSPLDEEN...
Escherichia coli class B acid phosphatase precursor:
MRKITQAISAVCLLFALNSSAVALAkSSPSPLNPGT...
Clostridium perfringens e-toxin type B precursor:
MKKNLVKSLAIASAVISIYSIVNIVSPTNVIAkKEISNTVSNE...
aThree examples of secretory signal peptides from a eukaryote (Human), a Gram-negative bacterium
(E. coli) and a Gram-positive bacterium (Clostridium perfringens). The cleavage sites are marked by
arrows and the hydrophobic regions are underlined. Note that the Gram-positive signal peptide is
considerably longer than the Gram-negative, which is slightly longer than the eukaryotic one—these
examples have been selected to represent the average length for each organism group.
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can yield as good a predictive performance as machine learning-
based methods, even better if the homolog is very similar. Nair and
Rost52 carried out an extensive analysis of how close two proteins
should be in sequence space to have the same subcellular localiza-
tion. If pairwise identity is used as a measure of homology, the
conclusion was that over 70% identical residues in a pairwise
BLAST search53 are needed to correctly infer localization for 90%
of all proteins. The BLAST expectation value (E-value) or the so-
called HSSP distance (a measure developed for protein structure
prediction) was found to be better a estimator than percent
identities for localization predictive accuracy—regarding E-value,
its natural logarithm should be below approximately -80 to obtain
90% accuracy. On the other hand, Yu et al.54 found that localization
prediction by homology was better than a machine learning
method above a pairwise identity cutoff as low as 30%.

This protocol deals primarily with sequence-based tools, which
can be used even if no close homologs are found. These can also be
divided into two groups: those that predict the actual sorting
signals and those that base their prediction on global properties
of the sequence, for example, the amino-acid composition.

One of the first attempts at predicting subcellular localization
was a weight matrix for secretory SPs55. A weight matrix is a simple
sequence profile built from an ungapped multiple sequence align-
ment, where the weights are calculated from the counts of each
amino acid at each position in a window around the site of interest.
The SP weight matrix has in the past found extremely wide usage. It
does not exist as a stand-alone WWW-server, but it is included in
PSORT56 (see below), and it is still used in the tools SPScan (in the
GCG commercial package) and SigCleave (in the Emboss public
domain package).

Later, several machine learning methods have been used. Among
these are neural networks (NNs), hidden Markov models (HMMs)
and support vector machines (SVMs). The common feature is that
they are data driven, that is, they adjust their free parameters
gradually by repeated presentation of a data set, and thereby learn
to generalize from the examples they have been trained on. NNs57

are inspired by the way networks of biological neurons are
connected; the input patterns are presented to one or more layers
of artificial ‘‘neurons’’ that compute a weighted sum of their inputs
and apply a nonlinear function to the sum. When used on
biological sequences, NNs typically, like weight matrices, treat the
sequence as a series of overlapping windows, calculating a score for
each window from a number of position-specific weights; but
unlike weight matrices the calculation of the score can be nonlinear,
allowing correlations between positions to influence the prediction.

HMMs58 of the well-known profile architecture can also be seen
as an extension of weight matrices, where the alignment used to
calculate the weights can contain gaps, so that motifs of varying
length can be represented. In addition to the profile architecture,
there are many ways to build an HMM; for example, a branched
model can represent a choice between alternative patterns, while
a cyclic model can represent a repeated pattern. Finally, SVMs59

treat each input pattern as a set of numbers which is mapped onto a
high-dimensional space by the so-called kernel function, and then
define an optimal separating hyperplane in that space which
classifies the patterns into two categories and maximizes their
distance from the hyperplane.

SignalP60, a predictor of secretory SPs, was among the first to use
NNs for sorting signal prediction. Later, in version 2, an HMM was

added to the method61. In version 3, the input to the NN part has
been extended by including, in addition to the moving amino-acid
windows themselves, the relative position of each window and the
overall amino-acid composition of the entire sequence62.

An early method to predict mTPs was Mitoprot63. It is a feature-
based method, using a linear combination of a number of sequence
characteristics such as amino-acid abundance, maximum hydro-
phobicity and maximum hydrophobic moment (a-helix amphi-
philicity), which are combined into an overall score. For cTPs, one
of the first methods was the NN-based ChloroP26. A successor of
ChloroP is TargetP, which provides prediction of cTPs, mTPs and
secretory SPs64. Both ChloroP and TargetP use a combination of
NNs to calculate a transit or SP score, and a weight matrix to locate
the transit peptide cleavage sites.

Prediction by global sequence properties
In addition to the recognition of the sorting signals, prediction of
protein sorting can exploit the fact that proteins of different
subcellular compartments differ in global properties, reflected in
their amino-acid composition. It has been shown that the signal in
the total amino-acid composition, which makes it possible to
identify the subcellular localization, is due almost entirely to surface
residues65. Although the signal prediction methods are probably
closer to mimicking the actual information processing in the cell,
methods based on global properties can work also for genomic or
EST sequences where the N-terminus of the protein has not been
included or correctly predicted. Another advantage is that they
provide the opportunity to predict localizations for which the
sorting signals are not known or not adequately defined. One
drawback is that such methods will not be able to distinguish
between very closely related proteins or isoforms that differ in the
presence or absence of a sorting signal.

Nakashima and Nishikawa66 pioneered the prediction of protein
sorting by global properties by using a simple odds-ratio statistics
to discriminate between soluble intracellular and extracellular
proteins on the basis of amino-acid composition and residue-
pair frequencies. The NNPSL method by Reinhardt and Hubbard67

was the first to use NNs trained on overall amino-acid composition
to predict localization. The method distinguished between three
bacterial compartments (cytoplasmic, periplasmic and extra-
cellular) and four eukaryotic compartments (cytoplasmic, extra-
cellular, mitochondrial and nuclear). Interestingly, plant proteins
were found to be very poorly predicted and were not included in
the final method.

Cedano et al.68 used a simplified version of the nonlinear
Mahalanobis distance between amino-acid compositions to dis-
criminate between five possible localizations: intracellular, extra-
cellular, transmembrane, membrane-anchored and nuclear. This
approach has been refined by Chou and Elrod69,70, who used a
covariant discriminant method incorporating the Mahalanobis
distance to discriminate between three localizations in bacteria
and as many as 12 in eukaryotes. A number of SVM-based methods
using amino-acid composition also exist, the first being SubLoc by
Hua and Sun71.

Using amino-acid composition as the only input of course
discards all information about the sequence order. Some aspect
of this order can be incorporated into global property methods, for
example by using the frequencies of pairs of amino acids, either
consecutive (dipeptide composition) or separated by a certain
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number of positions. Nakashima and Nishikawa66, as mentioned
above, found that using pairs with a separation of up to four
positions improved performance considerably. The SVM-based
methods PLOC72 and ESLpred73 also include amino-acid pair
frequencies in their input. The problem with this approach is
that it creates a high number of input parameters—400 for each
separation distance—which can make machine learning methods
overfit (see next subsection). A compromise is represented by the
so-called pseudo-amino-acid composition approach introduced by
Chou74, where a mathematical function is applied to the amino-
acid pairs and then summed over the entire sequence, yielding only
one or two extra parameters for each separation distance. The exact
nature of this function can vary, but it is most often based on
physicochemical properties like the hydrophobicity or side-chain
mass. Another possibility is to calculate amino-acid composition
separately for a number of subregions of the input sequence. Thus,
Esub8 (ref. 75) uses the composition of the first and last half of each
sequence, whereas BaCelLo76 calculates the composition of N- and
C-terminal regions of varying width.

Another approach is represented by the feature-based Secreto-
meP program, which is designed to predict non-classically secreted
proteins19,23. SecretomeP is built upon the idea that extracellular
proteins share certain characteristics regardless of which mechan-
ism was used to secrete them. As it is not possible to collect a
sufficiently large data set of non-classically secreted proteins,
SecretomeP is trained on a positive data set of classically secreted
proteins with the SP removed. Several sequence-derived features
were tested for correlation to localization, and selected features
were combined using an NN. Some of the features were simple, like
number of atoms or number of positively charged residues, others
consisted of the outputs of other prediction softwares like ProP or
PSORT. Interestingly, protein disorder as predicted by the Dis-
EMBL program77 turned out to be a feature with large discrimi-
natory power in both Gram-positive and Gram-negative bacteria—
secreted proteins generally show a higher degree of disorder. After
training and testing on the truncated secretory proteins, the
SecretomeP methods have been tested on small test sets of non-
classically secreted proteins. The mammalian version was able to
predict ten out of 13 human examples, and the Gram-positive
version predicted 14 out of 35. Apart from predicting non-
classically secreted proteins, SecretomeP can also be useful for
predicting subcellular localization of proteins with an incorrectly
assigned N-terminus.

PSORT is another early and widely used predictor of subcellular
localization using both sorting signals and global features78, which
has subsequently grown to an entire family of prokaryotic and
eukaryotic protein localization predictors. The original version of
PSORT uses a decision tree to make the prediction: a set of
sequence-derived parameters are computed and compared to a
representation of a number of ‘‘localization rules’’ that have been
collected from the literature. Many of these rules concern the
presence of various sequence motifs that enable proteins to be
localized to a certain compartment; others deal with amino-acid
content in certain regions. PSORT discriminates between 17
different compartments for plants, 14 for animals and 13 for
yeast. Later, the method was developed into PSORT II (ref. 79),
which uses a statistical classification technique, the k-nearest
neighbors algorithm, to integrate scores from all the features and
arrive at a prediction. Some of the least predictable compartments

were dropped in PSORT II, leaving 12 for yeast and animals (plant
sequences are not supported in that version). More recent members
of the PSORT family will be described later (see Box 1).

Data sets and overfitting
A key element when constructing any prediction method is the
quality of the data. Extracting a training set from available
databases implies a large amount of work and carries a number
of critical decisions and pitfalls. As an example, if the ‘‘subcellular
location’’ comment in SWISS-PROT80 contains ‘‘endoplasmic
reticulum’’, the protein may be dissolved in the ER lumen,
embedded in the ER membrane or even associated with the
cytoplasmic face of the ER membrane, and these alternatives are
quite different with respect to the sorting signals involved.

Ideally, all training examples should have experimental evidence
and not be inferred by similarity or existing prediction methods.
When working with rare or poorly characterized sorting signals,
this may not be possible to achieve, and examples with labels such
as ‘‘potential’’ may have to be included. In that case, care must be
taken to avoid circular reasoning where a number of methods
simply reproduce the predictions of each other.

Furthermore, errors in the databases are not infrequent and add
an element of noise that may pose a serious problem for the
training. Fortunately, machine learning methods are potentially
capable of dealing with noisy data, for example, it is often seen that
NNs learn erroneous examples later than others or even refuse to
learn them at all81. The way in which noisy data are handled,
however, is critically dependent on the learning procedure and the
complexity of the model.

One problem that is rarely properly addressed, especially when
training global property methods, is homology in the data. All
machine-learning methods have many free parameters and there-
fore have the potential to overfit; that is, instead of learning the
general pattern in the training data, they learn each example ‘‘by
heart’’, including any noise they might contain. An overfitted
machine-learning method that is able to reproduce all its training
input/output patterns exactly will typically have a bad general-
ization ability, that is, it will show a low predictive performance on
patterns it has not seen before. The performance of a prediction
method must therefore always be measured on a test set that is
different from the data set used to train it. If the test set has
sequences that are significantly homologous to sequences in the
training data, the measurement will use patterns that are very
similar to those the predictor has seen before, and the apparent
performance of the method will be an overestimate. To compute a
true generalizable performance, the data set should be reduced so
that no detectably homologous pairs remain82.

As an example, when training NNPSL, Reinhardt and Hubbard67

did reduce their data set, but only removed sequences with more
than 90% identity to each other, which is clearly much higher than
the detectable homology threshold. Several newer methods, includ-
ing the above-mentioned SubLoc71, are trained with the NNPSL
data set, which thereby unfortunately has received a kind of
benchmark status. Park and Kanehisa72, when training the 12-
localization eukaryotic SVM-based predictor PLOC, constructed a
data set in a similar way, but from a more recent SWISS-PROT
version. In this data set, which has also been used in other methods,
for example, LOCSVMPSI (ref. 83), they allowed at most 80%
pairwise identity between sequences, thus reducing the impact of
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sequence homology on the performance evaluation a bit. However,
studies by Nair and Rost52 and Yu et al.54 indicate that subcellular
localization is significantly conserved even when the sequence
identity is at 25–40%. Thus, the aforementioned data sets are not
sufficiently homology reduced. In fact, Pierleoni et al.76 recently
showed that the prediction of subcellular localization in the NNPSL
data set could be carried out with a BLAST search53, where the

localization of each protein was simply predicted to be that of the
closest homolog within the data set. The performance of this simple
procedure was actually better than that of the machine-learning-
based methods NNPSL and SubLoc and at the same level as two
newer methods (LOCSVMPSI (ref. 83) and ESLpred(ref. 73)).
Therefore, care should be taken when comparing performance
values reported in the literature.

MATERIALS
EQUIPMENT
A computer with access to the internet and a web browser.

EQUIPMENT SETUP
Data Your input protein sequences should be written in the standard one-letter
code. Thus, the allowed characters are ACDEFGHIKLMNPQRSTVWYand also
X (unknown). Spaces and line breaks will be ignored and will not affect the
predictions. On the CBS (Center for Biological Sequence Analysis) localization
prediction servers and most other servers described here, you can choose to
upload your sequences either through copy-and-paste in an input window or
by submitting an entire sequence file (which must be in plain text format).
If submitting more than one sequence, the file must be in FASTA format:
each sequence should be preceded by a line beginning with the ‘‘4’’ sign
followed by the sequence name (it does not have to be a unique name). Two
example data sets, one prokaryotic and one eukaryotic, that the reader may
use for testing the methods described here are found at the supplementary
webpage: http://www.cbs.dtu.dk/suppl/natureprotocols/. These two files also
serve as an example of the FASTA format.
Programs The following localization prediction programs will be described in
this protocol—see PROCEDURE and TROUBLESHOOTING for usage and
web addresses. A list of the programs with the web addresses as clickable links
can also be found at the supplementary webpage: http://www.cbs.dtu.dk/suppl/
natureprotocols/. Programs hosted at the Center for Biological Sequence
Analysis are marked ‘‘(CBS)’’:
TargetP 1.1 (CBS): secretory SPs, mTPs and cTPs in eukaryotes.
ChloroP 1.1 (CBS): cTPs in plants.
SignalP 3.0 (CBS): secretory SPs in eukaryotes and Gram-negative and
Gram-positive bacteria.
TatP (CBS): twin-arginine translocation SPs in bacteria.

TMHMM 2.0 (CBS): transmembrane a-helices.
B2TMR and HMM-B2TMR: transmembrane b-barrels.
big-Pi: glycosylphosphatidylinositol (GPI) membrane anchors in eukaryotes.
NMT: myristoyl membrane anchors in eukaryotes.
Myristoylator: myristoyl membrane anchors in eukaryotes.
LipoP (CBS): lipoprotein SPs in bacteria.
PROSITE pattern PS00014: ER lumenal retention motifs in eukaryotes.
Golgi predictor: Golgi retention signals in eukaryotes.
PredictNLS: nuclear localization signals (NLSs) in eukaryotes.
NucPred: NLSs in eukaryotes.
NetNES (CBS): leucine-rich nuclear export signals in eukaryotes.
PeroxiP: C-terminal peroxisomal targeting signals in eukaryotes.
PTS1: C-terminal peroxisomal targeting signals in eukaryotes.
SecretomeP (CBS): SP-less secretion in mammals and bacteria.
NetStart (CBS): start codon prediction in eukaryotic DNA sequences.
ProP (CBS): propeptide cleavage in eukaryotes.
Phobius: combined prediction of SPs and transmembrane a-helices.
In addition, a number of non-CBS multicategory localization prediction
programs will be described in Box 1. ! CAUTION On the CBS servers,
there are certain restrictions on the size of each submission and the
number of submissions allowed per 24-h period, to prevent server overload.
All normal and even most heavy users will easily be accommodated
within these limits, although you may have to split up your sequence file
in some cases.

For those who have problems with these restrictions or who would prefer
to keep their sequence data in-house, most of the CBS programs are also
available as stand-alone program packages for local use. More information
is available on the server pages.

PROCEDURE
1| If you have eukaryotic sequences, go to TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/; Fig. 1) (ref. 64). If you
have bacterial sequences, proceed directly to Step 7. TargetP will give a prediction of which kind, if any, of N-terminal sorting
signals your sequences have: SP, mTP, cTP (if applicable) or as a last option ‘‘no sorting signal’’ (‘‘other’’).

2| Customize TargetP. Pick the Plant version for sequences from higher plants and the Non-plant version for all other
eukaryotic proteins. If you would like TargetP to predict the cleavage sites of the predicted presequences, tick the ‘‘Perform
cleavage site predictions’’ box. For SPs and cTPs, SignalP 1.1 (ref. 60) and ChloroP 1.1 (ref. 26), respectively, are automatically
used to predict the cleavage sites and the results incorporated into the TargetP output. You are also asked to choose cutoffs
for the predictions. The default is to simply let the highest score determine the prediction, without requiring this highest score
to be above any particular value. We recommend that you use this default. If you still choose to specify your own cutoff, or to
use either of the two predefined sets corresponding to a specificity of 0.90 or 0.95, note that the predicted score has to be
both the highest and above the specified cutoff in order for a prediction to be made.
! CAUTION Algal sequences were excluded from the training set used to construct TargetP. If you wish to use TargetP on algal
sequences, use the Plant version, but please be cautious in the interpretation of the results. TargetP is also only able to predict
nuclear-encoded proteins, and has not been tested on organelle-encoded proteins.

3| Run TargetP. Paste in your sequence or upload your sequence file. Make sure that, if possible, each protein in your set
contains its 130 N-terminal residues. Missing N-terminal residues or a too short sequence make the prediction less reliable.
If a protein is shorter than 130 residues, include the entire sequence. Click ‘‘Submit’’ to initiate the TargetP prediction.

4| Examine the output (Fig. 2). For every submitted protein, TargetP reports a prediction score for each of the four (Plant
version) or three (Non-plant version) possible outcomes (SP, mTP, cTP, ‘‘other’’), and assigns a predicted localization in the ‘‘Loc’’
column: (C)hloroplast, (M)itochondrial, (S)ignal peptide or ‘‘_’’ (‘‘other’’ localizations). If you specified your own cutoffs (see
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Step 2) and the highest score is below the cutoff for that particular presequence, a ‘‘don’t know’’ symbol (‘‘*’’) will be output.
Based on the scores, TargetP provides a ‘‘reliability coefficient’’, RC, which is a measure of how confident TargetP is in each
prediction. The RC ranges from 1 (very reliable prediction; virtually no false positives detected in the TargetP test set) to 5
(not reliable prediction; many false positives detected)—see the detailed discussion in ANTICIPATED RESULTS. If you chose
to include cleavage site predictions, the predicted length of amino-acid residues of the presequence is reported in the ‘‘TPlen’’
column. TargetP also outputs the length of your submitted sequences in the ‘‘Len’’ column.

If TargetP predicts an SP, go to SignalP 3.0 to have a detailed prediction of the SP and its cleavage site (Step 7).
If TargetP predicts another category but the reliability is low (i.e., the RC is 4 or 5), you should also consult SignalP 3.0

(Step 7) to get a second opinion about whether your sequence could be an SP. SignalP 3.0 is newer and based on a larger data
set than the SP part of TargetP 1.1.

If TargetP predicts a cTP, go to ChloroP (Step 5) if you wish a detailed report of the cTP scores along the sequence. This
might help you to decide how much you trust the cTP (and the cleavage site) prediction.

If TargetP predicts an mTP or a cTP, and you wish to investigate whether your sequence contains either an IMS signal in
addition to a predicted mTP or a thylakoid lTP in addition to a predicted cTP, then go to Step 9.

If TargetP predicts ‘‘other’’, proceed to Step 11 to investigate if your protein contains predicted transmembrane regions.
If you think your protein might be secreted although you found no SP, see TROUBLESHOOTING point 1.

? TROUBLESHOOTING

5| Go to ChloroP 1.1 (http://www.cbs.dtu.dk/services/ChloroP/)26. Note: use ChloroP only if you have plant (or algal)
sequences and would like to get a detailed report of the scores of a predicted cTP. Paste in your sequence or upload your
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Figure 1 | A screenshot of the TargetP server.
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sequence file. Include if possible the
100 N-terminal residues (this is the
region on which ChloroP was trained).
Tick the ‘‘Detailed output’’ box if you
wish the detailed score report (see
below). Click ‘‘Submit’’.

6| Examine the output from ChloroP. ChloroP will report for each protein a ‘‘Score’’ indicating how likely it is that the protein
has a cTP. Note that the range of this score is rather compressed, and usually lies between 0.4 and 0.6. The cutoff for predicting
a protein to have a cTP is 0.5 (a score above this value will yield a ‘‘Y’’ in the ‘‘cTP’’ column), and any score above 0.55 is a
quite strong prediction. The ‘‘CS-score’’ is the maximum score of a weight matrix used to predict the cleavage site, and is used
to decide the ‘‘cTP length’’, which is the predicted length of the cTP. If the ‘‘Detailed output’’ option was chosen, ChloroP will
also report three different scores for each amino-acid residue in each submitted sequence: the residue-wise NN score (‘‘Raw’’), a
derivative of this score (‘‘Deriv.’’), used to define the region within which to apply the weight matrix and search for the cleavage
site, and the cleavage site score for each position (‘‘CS-score’’). The cleavage site is directly N-terminal of the residue with the
highest CS-score. If you have found a cTP, go to Step 9 in order to investigate whether your sequence contains a thylakoid lTP
in addition to the cTP. Otherwise, proceed to the next step.

7| Go to SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/; Fig. 3) (ref. 62). It is important that you choose the correct
organism group (Eukaryotes, Gram-negative bacteria or Gram-positive bacteria), as the SPs from these groups are quite different.
If in doubt whether a bacterium is Gram-positive or Gram-negative, check the NCBI Taxonomy database (http://www.ncbi.nlm.
nih.gov/Taxonomy/taxonomyhome.html): Gram-positive bacteria comprise the groups Firmicutes and Actinobacteria, whereas
all other bacteria are basically Gram-negative. However, it should be noted that the training set of Gram-negatives is heavily
dominated by Proteobacteria, and we actually do not know whether some of the rarer groups have SPs that differ from those
of Proteobacteria.

The other options can safely be left at their default values. Paste in or upload your sequences and click ‘‘Submit’’.
! CAUTION By default, SignalP truncates each sequence to 70 residues to make the graphical output more readable and to
avoid false positive cleavage site predictions from downstream regions of the sequence. If you choose to disable truncation,
note that although SignalP-NN performance is only marginally affected, the sensitivity of SignalP-HMM will be drastically
reduced.

8| Examine the output from SignalP. The many scores in the output can be overwhelming, so we will give an explanation here.
SignalP-NN is a system of two artificial NNs, one trained to distinguish between SP and non-SP windows, and the other trained
to distinguish SP cleavage sites from everything else. The output scores from the networks are called S-score and C-score,
respectively. The S-score can be interpreted as an estimate of the likelihood of the position belonging to the SP, whereas the
C-score can be interpreted as an estimate of the likelihood of the position being the first in the mature protein (position +1
relative to the cleavage site). If there are several C-score peaks of comparable strength, the true cleavage site may often be
found by inspecting the S-score curve in order to see which of the C-score peaks coincides best with the transition from a high
to a low S-score. To formalize this and improve the prediction, we defined the Y-score, which is the geometric average of the
C-score and a smoothed slope of the S-score. The Y-score gives the best estimate of where the SP is cleaved. The S-, C- and
Y-scores are shown in the graphical output of SignalP-NN (Fig. 4).
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Figure 2 | Output from the TargetP server, tested

on ten sequences from Arabidopsis thaliana. The

‘‘Loc’’ column contains the prediction: ‘‘C’’ for

chloroplast, ‘‘M’’ for mitochondrion, ‘‘S’’ for

secretory or ‘‘_’’ for ‘‘other’’. Nine of the answers

are correct, whereas the transmembrane protein

ACA11_ARATH should have had a ‘‘_’’. The proteins

shown are as follows: AAT1: aspartate

aminotransferase, mitochondrial precursor; AAT3:

aspartate aminotransferase, chloroplast precursor;

12S1: 12S seed storage protein CRA1 precursor;

ABP1: auxin-binding protein 1 precursor; ACA11:

putative calcium-transporting ATPase isoform 11;

ACT12: actin-12; ADO2: adagio protein 2 (LOV

kelch protein 2); ADO1: adagio protein 1 (LOV

kelch protein 1); ACO12: putative acyl-coenzyme A

oxidase 1.2, peroxisomal; BCB1: blue copper

protein precursor (phytocyanin 1).
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For the discrimination between SPs and non-SPs, we have defined the D-score, which is simply the average of the maximal
Y-score and the mean S-score (calculated from the N-terminus to the position of the highest Y-score). The D-score was found
to give a better discrimination than S-score or Y-score alone.
While SignalP-NN looks at the sequence as a series of overlapping windows, SignalP-HMM fits the entire sequence onto a model
of an SP. The model has separate sub-states representing the n-, h- and c-regions and the cleavage site. For each position in the
sequence, SignalP-HMM outputs the posterior probability that the position is in any of these sub-states. These probabilities are
shown in the graphical output of SignalP-HMM (Fig. 5). SignalP-HMM is a branched HMM, which, in the eukaryotic version,
distinguishes between three types of sequence: signal peptide (S), signal anchor (A) and other (Q). A signal anchor, just like
an SP, contains a region of hydrophobic residues close to the N-terminus, but it is not cleaved. Instead, it remains as a
transmembrane a-helix in the membrane and anchors the protein to the membrane in an N-in/C-out orientation. A protein
anchored in this way is called a type II membrane protein84. For bacteria, too few type II membrane proteins were found
in the database to train a signal anchor branch.

There are also inverted signal anchors that insert in the membrane with the N-terminus first and anchor the protein in an
N-out/C-in orientation; such a protein is known as a type III membrane protein84. SignalP-HMM is not trained to recognize
inverted signal anchor sequences, but TMHMM and other membrane protein topology predictors (see Step 11) can handle
both signal anchor and inverted signal anchor sequences.

It is always a good idea to check the graphical output of SignalP. It can be seen from the graphs whether the prediction
shows a typical SP with one clear cleavage site or a more ambiguous picture. If there is more than one peak in SignalP-NN’s
Y-score and SignalP-HMM’s cleavage site probability, the predicted cleavage site should be taken with caution. Of course,
checking the graphical output of every sequence may be unrealistic if you have submitted an entire proteome—in that case,
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Figure 3 | A screenshot of the SignalP server.
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you would probably prefer to use the
‘‘short’’ output option—but it is still
possible to assess the strength of the
individual predictions by looking at the
value of the D-score; see ANTICIPATED
RESULTS.

If you think your protein might be
secreted although you found no SP, see
TROUBLESHOOTING point 1.

If the graphical output from SignalP-
NN shows a low S-score in the first part
of the sequence but a higher value down-
stream, see TROUBLESHOOTING point 2.

If you have found an SP in a eukaryotic
sequence but do not trust the cleavage
site prediction, consult TROUBLESHOOTING
point 3.

Otherwise, proceed to Step 10 for
prokaryotes or Step 11 for eukaryotes.
? TROUBLESHOOTING

9| For proteins that TargetP predicted to be in the chloroplast or mitochondrion, try also to submit the sequence with the
transit peptide removed to SignalP (Step 7), to see if it might be localized to the IMS (mitochondrion) or thylakoid lumen
(chloroplast). You should use the prokaryotic version of SignalP but there is no clear consensus whether the Gram-positive or
Gram-negative version is preferable. Note that in particular the cTP cleavage site prediction is relatively unreliable, and instead
of just removing the predicted cTP you should consider submitting several truncated versions of your protein to SignalP. An
ambitious approach tested previously for the lTP prediction85 is to remove the 20–80 N-terminal residues (very few cTPs fall
outside of this length interval) in steps of five residues, and submit each of these truncated sequence versions to SignalP. If at
least one truncated sequence is predicted to have an SP, and also fulfill certain other requirements (e.g., overall presequence
length), this is interpreted as the protein having a bipartite cTP + lTP presequence. The mTP cleavage site prediction is better
than the cTP cleavage site prediction, and this elaborate scheme may not be warranted to predict an IMS signal. Note, however,
no systematic study that uses this scheme for predicting IMS signals has been published to date.

For chloroplast proteins, go to the next step to check for Tat SPs—this special translocation system, known mainly from
Gram-negative bacteria, is also found in thylakoid membranes. For mitochondrial proteins, proceed to Step 11 to see if your
protein is a membrane protein.

10| If your sequence is from a bacterium (or a plant protein with a cTP; see previous step), there is a possibility that it might
be using the so-called Tat (for twin-arginine translocation) pathway86. To translocate proteins across the plasma membrane

(inner membrane in Gram-negative
bacteria or thylakoid membrane in
chloroplasts), this pathway uses a
secretion pore that is separate from the
standard translocon, which is built from
products of the Sec genes. The signal
peptidase, however, is the same in the
two pathways. One surprising aspect of
the Tat pathway is that it can apparently
transport fully folded proteins, whereas
proteins using the Sec pathway must be
kept in an unfolded conformation. In
Gram-negative bacteria, the Tat pathway
is preferentially used by periplasmic
proteins with metal cofactors. Their SPs
are longer but less hydrophobic than
Sec SPs87 and they carry a sequence
motif with two consecutive conserved
arginines in the n-region. Tat SPs can
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Figure 4 | The graphical output of SignalP-NN, showing C-, S- and Y-score. The cleavage site is predicted

to be at the position of maximal Y-score. The example shown here is human cystatin C precursor.
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Figure 5 | The graphical output of SignalP-HMM, showing the posterior probabilities for n-, h- and

c-region and cleavage site. The example is the same as in Figure 4.
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be predicted with our tool TatP (http://
www.cbs.dtu.dk/services/TatP/)88,
which is based on an NN in combination
with a simple pattern matching of the
twin-arginine motif. Note: You should
consult TatP even if your SignalP predic-
tion was negative, as the lower hydro-
phobicity of Tat SPs sometimes makes
them go undetected by SignalP.

11| To check whether your protein is an
integral membrane protein, try a trans-
membrane a-helix predictor. There are
several of these available on the net (a
list is found at http://www.psort.org/),
but we recommend TMHMM 2.0 (http://
www.cbs.dtu.dk/services/TMHMM/)89, an
HMM predictor from our own group. In
2001, a comparative study of transmembrane a-helix predictors found TMHMM 2.0 to be the best performing program out of
14 (see ref. 90). Another comparative study from 2002, which analyzed as many as 27 different methods, found that advanced
(machine learning) methods were more accurate than simple hydrophobicity-based predictions, but no single advanced method
was best by all scores91. In this study, TMHMM 1.0 was found to be among the most representative methods (version 2.0 was
not tested). A comparison from 2005 placed TMHMM 2.0 as one of the four methods that consistently performed well92. Even
more recently, a combined review and benchmark placed TMHMM 2.0 as number three in a comparison of ten methods regarding
the consistency of their predictions, but ended by concluding that ‘‘if one single server is to be recommended, it is probably
TMHMM’’93. Note that both proteins with and without SPs or transit peptides can have transmembrane helices. If an SP is
followed by a single transmembrane helix further downstream, this transmembrane region is referred to as a stop-transfer
sequence. In this case, the mature protein has an N-out/C-in orientation and is called a type I membrane protein84.
An example of the graphical output of TMHMM 2.0 is shown in Figure 6.

If TMHMM predicts a transmembrane helix in the same region where SignalP predicts an SP, see TROUBLESHOOTING point 4.
? TROUBLESHOOTING

If you have found one or more transmembrane helices in a eukaryotic sequence, proceed to Step 14 to see if your protein is
retained in a compartment along the secretory pathway.

If you have found one or more transmembrane helices in a prokaryotic sequence, proceed directly to Step 17.
Otherwise, proceed to the next step.

12| Not all transmembrane proteins have a-helical transmembrane domains—some have a transmembrane b-barrel that forms a
pore with a hydrophobic outside and a hydrophilic inside94. These proteins are found in the outer membranes of Gram-negative
bacteria, chloroplasts and mitochondria, and they are generally more difficult to predict than the a-helical proteins. A number of
predictors are available (see http://www.psort.org/ for a list), for example the NN-based B2TMR (ref. 95) and the HMM-based
HMM-B2TMR (ref. 96) (both found at http://gpcr.biocomp.unibo.it/predictors/—note that the website requires a free registration).

If you have found a transmembrane b-barrel, go directly to Step 17. Otherwise, proceed to the next step.

13| Even if your protein does not have a transmembrane sequence, there is still a possibility that it might be anchored
to a membrane by a covalently attached lipid group. For eukaryotes, perform option A, for prokaryotes perform option B.
(A) Sequences from eukaryotes: Check for the presence of a GPI anchor near the C-terminus or a myristoyl anchor at the
N-terminus, depending on whether you have found an SP or not. Proteins with GPI anchors also have SPs and are thus anchored
to the lumenal or outside face of the membrane. The GPI moiety is attached to the new C-terminus after cleavage of a C-terminal
propeptide. Myristoylated proteins do not have SPs and are anchored to the cytoplasmic face of the membrane, with the
myristoyl moiety attached to an N-terminal glycine. At present, we do not have publicly available in-house methods to predict
these two lipid modifications at CBS, but they can be predicted with the big-Pi and NMT tools (http://mendel.imp.univie.ac.at/
mendeljsp/sat/index.jsp)97, which are based on sequence profiles and physical properties of the amino-acid side chains in
various regions around the modification site. Myristoylation can also be predicted with the NN-based Myristoylator
(http://www.expasy.org/tools/myristoylator/)98.
(B) Sequences from prokaryotes: Check whether your sequence could be a prokaryotic lipoprotein by using LipoP
(http://www.cbs.dtu.dk/services/LipoP/)99. These proteins have a special SP that is cleaved by lipoprotein signal peptidase
(also known as signal peptidase II) instead of the standard signal peptidase, and their cleavage site has a characteristic
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consensus signal with a 100% conserved cysteine at position +1, to which the lipid group is attached100. SignalP will typically
predict these sequences as SPs, but with an incorrect cleavage site. For the development of LipoP, both an NN and an HMM
approach were tried and found to perform well, but only the HMM version is implemented in the server. The HMM is a branched
architecture which is able to distinguish four types of sequence: signal peptidase I-cleaved SPs, signal peptidase II-cleaved
lipoprotein SPs, N-terminal transmembrane helices or cytoplasmic sequences.

LipoP was trained only on Gram-negative bacteria, as most of the known examples are from these, but nevertheless it was
able to correctly predict 26 out of 28 lipoproteins in a test set from Gram-positive bacteria. In Gram-negative bacteria,
lipid-anchored proteins bind to the periplasmic face of either the plasma membrane or the outer membrane. The choice between
these two membranes seems to depend on the second amino acid after the cleavage site. For prokaryotic proteins, proceed
directly to Step 17. For eukaryotic proteins, proceed to the next step.

14| If you have found an SP or a signal anchor in a eukaryotic sequence, remember that it does not necessarily imply that the
protein is secreted or integral to the plasma membrane—it may be retained in a compartment along the secretory pathway
(ER or Golgi) or sorted to the lysosome. ER lumenal proteins have a C-terminal retention signal with the consensus sequence
KDEL (where the K and the D are not totally conserved)18. These can be predicted by the PROSITE (ref. 101) pattern PS00014/
ER_TARGET. To scan your protein sequence for PROSITE patterns, go to http://www.expasy.org/prosite/, paste in your sequence
and click ‘‘Quick Scan’’.

ER membrane proteins have two less well defined retention motifs, one is the dilysine motif, which is located close to the
C-terminus of type I membrane proteins, the other is the diarginine motif, which is located close to the N-terminus of type II
membrane proteins18. Both of these motifs are found in the cytoplasmic part of the protein. PSORT I and II (http://psort.ims.
u-tokyo.ac.jp/)79 make an attempt at predicting ER-resident membrane proteins based on these two signals, but with low reliability.

Golgi-resident proteins are most often transmembrane proteins, but their retention signals are not well characterized and
vary between protein families18. A large group of Golgi proteins, including glycosyltransferases, are type II membrane
proteins, where the retention signal seems to reside within the transmembrane helix. A predictor for this signal exists at
http://ccb.imb.uq.edu.au/golgi/golgi_predictor.shtml102.

15| If TargetP predicted ‘‘other’’ and you found no transmembrane domains, it basically means that the protein can be
cytoplasmic, nuclear or peroxisomal. TargetP in its current version cannot distinguish between these three localizations as
it recognizes only N-terminal sorting signals. Consult the prediction servers mentioned in this step for nuclear localization,
and in the next step for peroxisomal localization.

Nuclear localisation signals (NLSs) are generally rich in lysine and arginine. They can occur internally in the sequence and are
not cleaved. Some of them are called bipartite NLSs, as they consist of two basic regions separated by a spacer of approximately
ten residues103. The method PredictNLS (http://cubic.bioc.columbia.edu/predictNLS/)103 predicts nuclear localization by
comparing the query sequence to a database of nuclear motifs. This database initially consisted of experimentally verified
NLS sequences collected from the literature, and was subsequently expanded by two procedures: first by including matching
sequences from homologs with more than 80% identity, then by ‘‘in silico mutagenesis’’ where residues in the given motifs were
changed or removed, and the mutated motifs were accepted if they matched at least two distinct families of nuclear proteins
but no non-nuclear proteins. NucPred (http://www.sbc.su.se/~maccallr/nucpred/)104 also uses a set of nuclear-specific patterns
(regular expressions), but instead of being based on experimentally known NLSs, the patterns are found directly from the data
sets of nuclear and non-nuclear proteins by a genetic programming algorithm. Thus, the patterns recognized by NucPred do not
necessarily function as localization signals but may include other motifs specific to nuclear proteins, such as DNA-binding
domains. A paper describing NucPred is available from the server page.

NLSs are generally weaker than the cleaved sorting signals recognized by TargetP and SignalP. To complicate matters further,
not all nuclear proteins have an NLS—some are imported by binding to other proteins having a signal105. Therefore, nuclear
localization predictors cannot be expected to have as high a predictive performance as secretory pathway, mitochondrial or
chloroplast predictors.

Unlike most other protein sorting mechanisms, nuclear import is not a one-way process. Many proteins spend only some of
their time in the nucleus and can shuttle back and forth between the nuclear and cytoplasmic compartments many times during
their life cycle106. Several pathways of nuclear export have been identified, but the best known export pathway requires a
leucine-rich nuclear export signal. This can be predicted with our tool NetNES (http://www.cbs.dtu.dk/services/NetNES/)107,
which is based on a combination of NNs and HMMs.

16| Peroxisomes also have their own protein import machinery. Two signals for peroxisomal soluble proteins are known: the
uncleaved C-terminal PTS1 and the N-terminal PTS2, which is sometimes cleaved108. PTS1 is a relatively conserved C-terminal
tripeptide (most common sequence is SKL) directing proteins to the peroxisome, and two specialized predictors, PeroxiP and
PTS1, are available. As the known PTS1 tripeptides are also abundant in known non-peroxisomal proteins, these predictors look
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at a larger C-terminal region (12 residues). PTS2 is rarer and less well characterized, and only PSORT II makes an attempt at
predicting it. Peroxisomal membrane proteins have been proposed to have either of two targeting signals, mPTS-1 and mPTS-2
(ref. 108), but these are even less characterized, and to our knowledge no available method predicts them. PeroxiP (http://
www.bioinfo.se/PeroxiP/)109 is a tool from our group even though it is not hosted at the CBS. It is based on a set of accepted
PTS1 tripeptides and an NN- and SVM-based machine-learning module, which is trained to discriminate on the nine additional
residues and on the amino-acid composition of entire protein (allowing at most 25% sequence identity between any two
proteins in the data set). The combination of the motif module and the machine-learning module yields a localization
prediction. The signal is still rather weak and the performance significantly lower than what is possible to obtain for most
other compartments. To improve the performance, the web server uses TargetP and TMHMM in a prescreening step to remove
highly confident predictions of secreted and transmembrane proteins before submitting the sequence to PeroxiP.

The PTS1 predictor (http://mendel.imp.univie.ac.at/PTS1/)110 is based on sequence profiles and physical properties of the
amino-acid side chains in various regions within the 12 most C-terminal residues of the protein.

17| A sequence-based prediction of subcellular localization should always be complemented by a database search. First, search
the annotated SWISS-PROT database (http://expasy.org/sprot/)80 with your sequence and check the annotation of the closest
homologs. The search can be performed with BLAST (ref. 53), for example, at NCBI (http://www.ncbi.nlm.nih.gov/BLAST/)—
click ‘‘Protein-protein BLAST (blastp)’’ and choose ‘‘swissprot’’ as the database. If you do not find annotated close homologs,
search the entire protein sequence universe (go to NCBI BLAST as before, but choose ‘‘nr’’ as the database). Then run the best
hits through the predictors. If all, or almost all, of the best hits yield the same predicted localizations as your original sequence,
you can be more confident in the prediction.

18| Do not believe blindly in the CBS tools; go for a second opinion from other subcellular localization predictors available
on the web. A fairly complete list can be found at the PSORT main page (http://www.psort.org/). Here (Box 1) we have selected
a few that we can recommend, starting with the recent members of the PSORT family. In making the selection, we have looked
at the general usability of the websites and at the quality of the data set construction, including homology reduction. Note,
however, that if you require a eukaryotic prediction with more than six localization categories, there is no available predictor
that is based on properly homology reduced data.

? TROUBLESHOOTING
1. If you think your protein might be secreted although you found no SP, consider the possibility that it might be secreted via a
non-classical pathway. The SecretomeP server (http://www.cbs.dtu.dk/services/SecretomeP/) offers a feature-based prediction
of extracellular localization for proteins without an SP from mammals19 and bacteria23; see also ‘‘Prediction by global sequence
properties’’ in the INTRODUCTION.

2. If the graphical output from SignalP-NN shows a low S-score in the first part of the sequence but a higher value downstream,
check whether there is a second methionine in the sequence, which could be the actual start codon. Coding regions predicted from
genomic DNA sequence quite often have wrong start codons assigned. To get a prediction of a eukaryotic start codon based on the
DNA sequence, you might want to try the NN-based NetStart server (http://www.cbs.dtu.dk/services/NetStart/)111.

3. For eukaryotic proteins with SPs: if you have determined the N-terminus of your mature protein by experimental means but
SignalP reports a cleavage site upstream of that, consider that your protein might have an N-terminal propeptide that is cleaved
after SP cleavage. There are many types of propeptides, and they are cleaved by a wide range of peptidases, but one of the more
common forms in eukaryotes is the N-terminal propeptide cleaved at mono- or dibasic sites by subtilisin/kexin-like proprotein
convertases (PCs), of which the best characterized is furin. These cleavage sites can be predicted with our NN-based tool ProP
(http://www.cbs.dtu.dk/services/ProP/)112. The method includes two networks, one specific to furin and another for PCs in
general. The sensitivity is much higher for the furin-specific network, and the default is to run only this predictor; if you also
want results for the general PC network, remember to select that option before submitting your sequence.

Bacteria, especially Gram-positive bacteria, also have periplasmic or extracellular peptidases, which cleave N-terminal
propeptides, but to our knowledge, no predictor is available for these.

4. If TMHMM predicts a transmembrane helix in the same region where SignalP predicts an SP, this means that there is a
false-positive prediction from either SignalP or TMHMM. Note that SignalP-NN in its current version was not trained with
membrane proteins in the negative set and therefore has a higher false-positive rate on those, whereas TMHMM similarly was not
trained to avoid predicting SPs as transmembrane. In this case, we suggest that you try Phobius (http://phobius.cgb.ki.se/)113.
This is an HMM that combines the architectures of SignalP-HMM and TMHMM. It is less accurate than SignalP-HMM in finding the
correct cleavage site, partly because it does not distinguish between eukaryotes and Gram-positive and Gram-negative bacteria,
but it has a better discrimination between SPs and transmembrane helices than the present version of SignalP.

In addition, you should search the databases with your sequence; see Step 17 of the PROCEDURE. If your putative SP matches
a region that is clearly transmembrane in another protein (e.g., if it is annotated as such without ‘‘Potential’’ or ‘‘By similarity’’,
or if it occurs downstream of a highly confident SP prediction), it is probably a transmembrane helix and not an SP.
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BOX 1 | A SELECTION OF NON-CBS MULTICATEGORY PROTEIN SUBCELLULAR
LOCALIZATION PREDICTION PROGRAMS

This list with the web addresses as clickable links can also be found at the supplementary webpage http://www.cbs.dtu.dk/suppl/
natureprotocols/.

WoLF PSORT (http://wolfpsort.org/)123 is a successor to PSORT II for eukaryotes. Predictions are based on PSORT II features (including known
sorting signal motifs), iPSORT features (see below), amino-acid content and sequence length. Features are selected and weighted in a learning
procedure and combined using the k-nearest neighbors classifier. WoLF PSORT predicts 11 localizations for animals and plants, and ten for fungi.
In addition, it is capable of predicting some dual localizations such as ‘‘nuclear and cytoplasmic’’. It achieves a significant improvement in
prediction accuracy over PSORT II, while actually being simpler in the sense that it uses fewer features for classification. However, the
comparison is difficult as the data sets have not been homology reduced. From the output page, there is a link to a very detailed report of each
prediction, showing all features used for classification, so that the evidence can be evaluated. A paper describing WoLF PSORT is available from
the server page.

PSORTb v.2.0 (http://www.psort.org/psortb/)124 is a predictor specifically designed for bacteria, discriminating between five possible localizations
in Gram-negatives (cytoplasm, inner membrane, periplasm, outer membrane and extracellular) and four in Gram-positives (cytoplasm, membrane,
cell wall and extracellular). It uses a combination of BLAST homology searches to proteins of known localization, PROSITE motifs and profiles101,
a collection of outer membrane-specific motifs, SP and transmembrane helix predictors based on HMMs, and one SVM-based prediction module
for each localization using the occurrence of frequent subsequences. The data set has not been homology reduced. PSORTb has been designed
to yield as high a precision level as possible, at the expense of recall; so in some cases it will output an ‘‘unknown’’ prediction.

iPSORT (http://biocaml.org/ipsort/iPSORT/)125 note: the URL given in the paper is no longer valid) specifically recognizes eukaryotic
N-terminal sorting sequences. The data set is from TargetP. The authors tested a large number of physicochemical features of N-terminal
parts of proteins with signal or transit peptides and obtained a combination of simple rules that yielded a discriminative performance fairly
close to that of TargetP. Interestingly, a simple hydrophobicity scale even outperformed the NN-based TargetP on plant SPs.

LOCtree (http://cubic.bioc.columbia.edu/services/loctree/)126 is a hierarchical system combining several SVMs. The hierarchy is designed to
mimic the sorting process in the cell, with the binary SVMs organized in the same order as the sorting decisions. It comes in three versions: plant
(six localizations: secreted, organelles of the secretory pathway, nuclear, cytoplasmic, mitochondrion and chloroplast), eukaryotic non-plant
(five localizations) and bacteria (three localizations: secreted, periplasm and cytoplasm). Transmembrane proteins are not considered. Data
were derived from SWISS-PROT and homology reduced to a threshold below which homology-based annotations of subcellular localization were
found to be unreliable52. In addition to the ‘‘subcellular location’’ comments, other keywords in SWISS-PROT were used for annotating
localization through the LOCkey algorithm46, thereby enlarging the data set considerably. Each input sequence is used to search the UniProt
database80, creating a profile of homologous sequences. The amino-acid composition of the profile is then used as input to the SVMs, for the
whole sequence, for the N-terminal 50 residues and for three predicted secondary structure states separately. In addition, the SignalP output is
used as an input to the SVM at the top node for the eukaryotic versions. Note: LOCtree can have very long response times.

BaCelLo (http://gpcr.biocomp.unibo.it/bacello/)76 is a recently published eukaryotic predictor with very promising performance values. It is
based on a number of SVMs organized in a decision tree, very similar to that of LOCtree. Sequences are represented in a very simple way, using
just the amino-acid composition of the raw sequence and of sequence profiles found with BLAST, both for the whole sequence and for N-terminal
and C-terminal regions separately. There are separate predictors for animals, plants and fungi. In plants, there are five localizations: secretory
pathway, cytoplasm, nucleus, mitochondrion and chloroplast; in animals and fungi, there are four. Transmembrane proteins are not considered.
Data are derived from SWISS-PROT and homology reduced to 30% identity.

Protein Prowler v. 1.2 (http://pprowler.imb.uq.edu.au/)127 comes in a Plant and a Non-plant version, and is based on the same data sets as
TargetP. It predicts eukaryotic proteins to the same three or four localizations, through a combination of different types of NNs (feed-forward,
recurrent128 and sequential-cascaded129), which are used to generate residue-wise scores, and SVMs, which are used to generate a prediction as
to the presence or absence of a presequence. The performance is reported to be better than TargetP. An accompanying method on the same
server, PTS1Prowler, predicts peroxisomal C-terminal targeting signals130.

CELLO v.2.5 (http://cello.life.nctu.edu.tw/)54 is an SVM-based predictor for both eukaryotes (12 localizations), Gram-negative bacteria
(five localizations) and Gram-positive bacteria (four localizations). The SVMs are organized in a two-level system, where the first level contains
a number of SVMs trained on various sequence encodings, and the second layer is a ‘‘jury SVM’’, which decides on the prediction based on
the outputs of the first-layer SVMs. The sequences are encoded by total amino-acid composition, dipeptide composition and amino-acid
composition (in some cases with a reduced alphabet) in a number of partitions of each sequence. The data sets are those of PSORTb 2.0
(ref. 124) (which has not been homology reduced) for bacteria and PLOC72 (where only sequences above 80% identity have been removed)
for eukaryotes. The authors report prediction accuracy for a number of different sequence identity values, and they found that above 30%
identity, a global alignment was better than the SVM-based prediction, whereas below 30% the prediction was best. Performance improvements
relative to PLOC and PSORTb 2.0 were reported, but the homology in the data sets makes it problematic to compare performances.

PA-SUB v2.5 (http://www.cs.ualberta.ca/~bioinfo/PA/Sub/)131 is a homology-based subcellular localization predictor, available in five
versions: animal (nine localizations), plant (ten localizations), fungi (nine localizations), Gram-negative bacteria (six localizations) and
Gram-positive bacteria (four localizations). Like WoLF PSORT, PA-SUB has a certain emphasis on trying to explain what features were important
for each protein localization prediction. For each query sequence, BLAST is used to find its SWISS-PROT homologs. The presence/absence pattern
of a number of annotation key words or phrases among these homologs is logged, and from this pattern the subcellular localization is inferred.
The pattern to localization mapping is learned using Naı̈ve Bayes (NB) classifiers. A crucial advantage of NB classifiers is the possibility to
determine the importance of every feature for a particular prediction. Other machine-learning techniques were tried by the authors, and NNs and
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ANTICIPATED RESULTS
Measuring the performance of a prediction method is not trivial. Simply counting the percentage of correct answers can be
misleading if the sizes of the classes in the data set differ greatly (e.g., if there are 99 negative examples for each positive
example, simply predicting everything as negative will give 99% correct answers). Two of the most often cited prediction
measures are sensitivity and specificity, which are calculated for each class separately. Sensitivity expresses how many of the
positive examples (e.g., SPs) are found (predicted correctly). Specificity is slightly more complicated, as there are two
competing definitions: (i) the proportion of the positive predictions that are true; or (ii) the proportion of the negative
examples that are predicted correctly. Here, we use definition (i). Instead of definition (ii), we prefer to report the false positive
rate, that is, how many positive predictions are there on negative examples. See Baldi et al.114 for an extensive discussion of
performance measures.

There is always a trade-off between sensitivity and specificity; if you want a higher sensitivity, you must also be prepared for
a higher number of false positives. The balance between the two kinds of errors, false negatives and false positives, can often
be adjusted by changing the threshold (also known as cutoff) for positive prediction.

In general, we have decided not to include performance data for all the prediction methods we describe. Performance
measures for multicategory methods are difficult to compare, partly because the data sets, as described, are often not properly
homology reduced, and partly because the number of predicted classes differ between the methods. Discriminating between
a higher number of location classes will always be more difficult and result in a lower overall percentage of correct predictions.
Therefore, we will focus on the performance of the two central tools of this protocol, TargetP and SignalP, in this section.
But first a couple of general remarks about multicategory methods.

Note that membrane proteins are often ignored by the multicategory methods, with the notable exception of PSORT II
and WoLF PSORT. In general, it is fairly easy to predict whether a protein is transmembrane or not (see Steps 11 and 12 in
PROCEDURE), but it is far more difficult to predict exactly which membrane in a eukaryotic cell a given transmembrane protein
is integral to. For example, as described in Steps 14 and 16, the sorting signals for membrane proteins of the ER and
peroxisomes are less well characterized and harder to predict than those of their lumenal counterparts. However, the membrane
protein-interested user is not totally lost. For Golgi type II membrane proteins, there is a predictor available; see Step 14.
Proteins of chloroplast thylakoid membranes and mitochondrial inner membranes are also fairly unproblematic; they can be
expected to have a transit peptide followed by either a signal anchor or an SP plus a stop-transfer sequence, and should
therefore be predictable by combining TargetP with SignalP, TMHMM and/or Phobius, although this scheme has never been
rigorously tested. Outer membrane proteins of chloroplasts and mitochondria do not have transit peptides, but most of them
can be recognized because they are of the b-barrel type; see Step 12 (how to distinguish between these two membranes in a
plant cell is quite another matter, we are not aware of any predictor capable of this).

Another class of proteins that are often ignored are those found in more than one compartment. Most multicategory methods
simply exclude those proteins when constructing their data sets (WoLF PSORT is again an exception, as mentioned). But also in
this case, combining predictors can sometimes help. NucPred and PredictNLS (see Step 15) recognize proteins with NLSs, and
this includes both those proteins that stay in the nucleus and those that are re-exported to the cytoplasm. When combining
these two predictors with NetNES, you get a prediction covering ‘‘cytoplasmic and nuclear’’, probably the most important dual
location. The methods ISort115 and PLPD116 both predict as many as 22 different subcellular locations determined in a yeast
high-throughput experiment, taking multiple locations into account. ISort uses pseudo-amino-acid composition, matches to
a database of functional domains and GO-numbers (see ‘‘Prediction of sorting signals’’), whereas PLPD reports a higher
performance without using GO-numbers. However, their results are limited to yeast, and neither is implemented as an
available web server.
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SVMs were actually found to yield better performance, but they were abandoned as the authors decided that the ability of NB classifiers to
explain a prediction outweighed the performance increase recorded for NN/SVM. Performance is difficult to compare with most other methods,
which do not use homology searches.

MultiLoc/TargetLoc (http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc/)132; TargetLoc is another predictor based on the
TargetP data sets, and it is also present in Plant and Non-plant versions. The authors have built a two-layer system of SVMs that take into
account the N-terminal part of the sequence (looking for the presence of N-terminal sorting signals), the overall amino-acid composition and
the occurrence of certain motifs from PROSITE101 and NLSdb103 in the sequence, creating an intermediate ‘‘protein profile vector’’. The protein
profile vector is then fed into the top layer SVMs making the localization prediction. The performance as measured on the TargetP sets is
reported as better than TargetP, but seems to be slightly lower than Protein Prowler (above). The extended version, MultiLoc, predicts up to
ten eukaryotic localizations, but it is trained on sequences allowing up to 80% sequence identity, which we believe is a too permissive
threshold; so the reported overall accuracy of approximately 75% (considerably better than PSORT II) is probably an overestimate.

BOX 1 | CONTINUED
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Recently, a review compared the performance of five multicategory methods, which were all capable of predicting at least nine
locations, on two data sets of mouse proteins117. The selected methods were CELLO, MultiLoc, Proteome Analyst (PA-SUB) and
WoLF PSORT (see Box 1) plus pTarget118 (which are all trained without sufficient homology reduction). The conclusion
was that ‘‘No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application
to hypothetical proteins’’—an important point to keep in mind when using multicategory subcellular localization methods.

TargetP performance
The outcome from TargetP is a prediction for each submitted protein of whether an N-terminal presequence (SP, mTP or cTP, for
Plant version) is present. The predictive performance varies between the three different signals it handles; see Table 2.
Although the exact figures depend on what test set is used for the evaluation, it is clear that the prediction of SPs is the most
accurate. It is also the most conserved and most studied of the three signals. Both sensitivity and specificity of SP prediction
have been measured to 90–95% for Plant and Non-plant TargetP versions. For cTPs and mTPs, sensitivities are at 80–90% and
specificities at approximately 70% (except for plant mTPs where specificity is 90%). This means that there are more false
positive predictions of cTPs and mTPs than of SPs.

The ‘‘reliability class’’ (RC) value associated with each prediction signifies how confident TargetP is in each prediction. The RC is
based on the difference between the highest and the second highest TargetP output scores: if this difference is larger than 0.8,
then RC ¼ 1; if it is between 0.6 and 0.8, then RC ¼ 2, and so on. An RC value of 1 means that the prediction belongs to the most
reliable class of predictions, and 5 that it belongs to the least reliable class. Table 2 shows that, as expected, RC ¼ 1 gives the best
performance in terms of the specificity, which is 100% for all tested sets (except plant SP where it is 99%). The specificity then
drops as the RC increases, but remains above what would be expected by random chance even for RC ¼ 5 for all sets.

If opted for, the results also include prediction of cleavage sites for the predicted presequences. The cleavage site prediction
uses SignalP and ChloroP for SP and cTP cleavage site predictions, respectively. The mTP cleavage site prediction is a
TargetP-unique feature. The cleavage site prediction is less accurate than the corresponding presequence presence prediction.
The SP cleavage site prediction is the most accurate whereas in particular the cTP cleavage site predictions should be
interpreted cautiously (only 44.8% correct predictions, within two residues). The mTP cleavage site results are in-between.
These differences reflect the varying degrees of conservation around the annotated cleavage sites for the three presequences.

SignalP performance
Before discussing the reliability of SignalP, one remark about the choice of organism group: note that there is no SignalP
version for Archaea. There are simply too few experimentally verified secretory proteins available for Archaea to train a specific
version. This is a problem that SignalP shares with other prokaryotic subcellular localization predictors such as PSORTb
(see Step 18). In a preliminary analysis of predicted SPs in the genome of the archaeon Methanococcus jannaschii119, we
found that they had eukaryotic-looking cleavage sites, a bacterial-looking charge distribution and a unique composition of
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TABLE 2 | TargetP performance valuesa.

Plant Non-plant

Category RC Cumul. sens. (%) Spec. (%) Cumul. sens. (%) Spec. (%) CS loc. % (RC not recorded)

cTP 1 24 100 — — 44.8
2 50 95 — —
3 62 81 — —
4 79 80 — —
5 85 42 — —

mTP 1 22 100 28 97 80.8
2 44 94 59 95
3 59 82 75 82
4 66 56 84 71
5 78 62 89 53

SP 1 66 99 62 100 74.9
2 81 100 85 94
3 88 100 90 87
4 92 67 94 88
5 94 33 95 55

aPerformance of TargetP 1.1, Plant and Non-Plant versions, for the various presequence categories. Discrimination performance is given by cumulative sensitivity (‘‘cumul. sens.’’) and specificity (‘‘spec.’’). Cumulative
sensitivity is measured as the percentage of evaluated proteins predicted to the particular reliability class (RC) or better. The specificity is measured as the percentage of correctly predicted proteins within the
particular RC, and is the best measure of how well TargetP is able to predict proteins within a certain RC. The localization prediction performance is measured on plant and non-plant protein sets of 555 and 1,110
proteins, respectively64. The cleavage site (‘‘CS’’) location performance is given as the percentage of positive predictions that have a correctly located cleavage site (‘‘CS loc.’’), except for cTP CS prediction where the
predicted CS is allowed to deviate with up to two residues from the annotated cleavage site (see ChloroP paper for a discussion of this26). SP CS prediction in TargetP is performed by an early version of SignalP60.
There is no RC value associated with a CS prediction.
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the hydrophobic region. Therefore, the current recommendation for archaeal sequences must be to try all three versions and
use a consensus of the three predictions.

SignalP does not have reliability classes like TargetP, but it is still easy to see whether the prediction is more or less reliable.
Simply compare the D-score with the D-score cutoff: if the output value is barely above the cutoff, the prediction is less reliable
than if it is far above the cutoff. In Table 3, we have shown the sensitivity and false positive rate (measured on nuclear and
cytoplasmic proteins) for varying values of the D-score cutoff. If you prefer a different trade-off between sensitivity and
specificity than what is given by the default cutoff, simply look up your desired sensitivity or false positive rate in the table
and find the corresponding cutoff value.

The cleavage site location performance is also given in Table 3. This is calculated as the percentage of correct cleavage site
predictions among predictions with a D-score above the chosen cutoff. In other words, this number expresses how much you can
trust your cleavage site prediction given the observed D-score.

It may be tempting to assess reliability by looking at how many of the five scores reported by SignalP-NN are above their
default cutoff values (counting the number of ‘‘YES’’ answers). Of course, requiring all answers to be ‘‘YES’’ will yield a better
specificity at the cost of reduced sensitivity. However, as the D-score provides the best discrimination, you actually get a better
performance (better sensitivity and cleavage site location for a given false positive rate) by using a higher D-score cutoff than
by looking at the other scores.

HMM performance is also given in Table 3. For eukaryotes, SignalP-HMM is clearly not as good as SignalP-NN, having many
more false positives. For bacteria, SignalP-HMM is slightly better at discriminating SPs from cytoplasmic sequences, but worse at
locating cleavage sites precisely. It is a good idea to check whether the NN and HMM predictions agree, especially if you want
reliable cleavage site predictions. The row in Table 3 labeled ‘‘NN + HMM’’ reports the performance if you accept only those
predictions where SignalP-NN and SignalP-HMM are both positive and predict the same cleavage site. As you can see, sensitivity
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TABLE 3 | SignalP performance valuesa.

Method Sens. (%) FP rate (%) CS loc. (%)

Eukaryotes
NN, D40.30 99.4 3.1 76.3
NN, D40.40 98.8 1.4 78.0
NN, D40.43* 98.6 1.2 78.4
NN, D40.50 98.2 0.8 78.9
NN, D40.60 95.1 0.4 79.3
NN, D40.70 85.1 0.2 81.0
NN, D40.80 57.8 0.0 85.8
HMM 98.4 3.4 75.8
NN+HMM 85.0 0.4 84.7

Gram-negative bacteria
NN, D40.30 99.2 8.7 85.6
NN, D40.40 97.8 3.9 89.9
NN, D40.44* 97.0 2.1 91.3
NN, D40.50 95.1 1.8 92.2
NN, D40.60 91.4 0.6 93.5
NN, D40.70 83.0 0.0 95.1
NN, D40.80 64.6 0.0 95.4
HMM 98.4 2.4 87.4
NN + HMM 91.1 0.6 94.1

Gram-positive bacteria
NN, D40.30 98.8 6.0 82.2
NN, D40.40 97.6 0.0 86.5
NN, D40.45* 97.6 0.0 86.5
NN, D40.50 96.4 0.0 86.3
NN, D40.60 92.8 0.0 87.1
NN, D40.70 75.4 0.0 89.7
NN, D40.80 53.3 0.0 91.0
HMM 98.2 0.7 82.4
NN + HMM 85.6 0.0 90.9
aPerformance of SignalP 3.0. Discrimination performance is given by sensitivity (‘‘sens.’’) and false positive rate (‘‘FP rate’’). FP rate is measured on cytoplasmic and (for eukaryotes) nuclear proteins. Cleavage site
location performance is given as the percentage of positive predictions that have a correctly located cleavage site (‘‘CS loc.’’). Results are reported for SignalP-NN with varying values of D-score cutoff (where the
default cutoff is marked by an ‘‘*’’), for SignalP-HMM and for a combination of these (counting only predictions where both methods agree on classification and cleavage site).
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drops considerably, but false positive rate is low and cleavage site precision is good (better than what you can get by increasing
D-score cutoff).

In two comparisons of SP prediction methods, SignalP has been favorably evaluated. In 2000, Menne et al.120 compared
SignalP version 1.1 and 2.0 to SPScan and SigCleave, which as mentioned in INTRODUCTION are both based on the older
weight matrix method55. Both bacterial and eukaryotic sequences were used. They found SignalP to be better than the weight
matrix-based methods, and SignalP 2.0 to be better than SignalP 1.1. Within SignalP 2.0, the NN part was found to predict
cleavage sites more precisely, whereas the HMM part had fewer false positives. However, they found much higher false-positive
rates (up to 18.3%) than we had measured for SignalP, which is probably due to their negative set containing some membrane
proteins with a transmembrane region within the 60 N-terminal residues.

In 2005, Klee and Ellis121 compared SignalP 3.0, SignalP 2.0 and TargetP to PrediSi122, Phobius113 and ProtComp 6.0
(a commercially available program from Softberry Inc.) on a set of exclusively mammalian proteins. For the discrimination
between secretory and non-secretory proteins (without transmembrane proteins), they found SignalP 3.0 D-score to be the
most accurate single score. Furthermore, they found that the predictive accuracy could be substantially improved by combining
scores from multiple methods into a single composite prediction. The best combinations turned out to consist of TargetP
prediction, SignalP 2.0 maximum Y-score, SignalP 3.0 maximum S-score and a choice of other SignalP scores as the fourth
component. Interestingly, SignalP 3.0 D-score was not included here.

Concluding remarks
Although there has recently been much progress in the field of experimental high-throughput determination of subcellular
localization of proteins, we believe that reliable localization prediction is still an invaluable (and inexpensive) tool to get a
quick and often correct suggestion for the localization of a protein.

No doubt, the subcellular localization tools described in this article will be further developed and refined as the size and
accuracy of the protein annotation databases increase, and as the knowledge of protein sorting mechanisms expands.

The servers at the CBS web pages are currently being changed such that they also function as proper SOAP (simple object
access protocol)-based web services (implemented by the Web Services Description Language). The SOAP server processes
requests and returns data in an XML-formatted SOAP packet using an agreed XML schema format. This means that other compu-
tational methods can interact directly with the methods without human intervention. As these standards and schemas change
quite rapidly, we refer to the CBS web pages (http://www.cbs.dtu.dk/ws/) for additional details and help on the current setup.
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